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The problem for assessment of dose proportionality (or linearity) is studied. Various
methods for assessment of dose proportionality (or linearity) such as ANOVA type
F -test have been proposed. Cheng et al. (2006) proposed an alternative approach
based on the slopes of adjacent dose levels under a crossover design. They showed that
when dose proportionality (or linearity) cannot be established, their proposed slope
approach is useful for evaluation of the degree of departure from dose proportionality
(or linearity). In this article, we propose the use of slopes between the dose level and
the initial dose (baseline), which we refer to as the baseline slope approach. The two
slope approaches are compared under a parallel group design by means of an ANOVA
type F -test and other tests. Simulation studies show that the proposed method has a
satisfactory small sample performance.

Key Words: Adjacent slope approach; ANOVA F -test; Baseline slope approach; Dose
proportionality.

1. INTRODUCTION

Before first-in-man clinical trial, dose-response studies in terms of
pharmacokinetic (PK) parameters are often conducted not only to assess drug
tolerance and safety but also to characterize dose-response curve with respect
to efficacy. Rodda et al. (1988) indicated that the clinical investigation of the
dose-response curve in terms of PK parameters can be classified into categories
of 1) dose-ranging study, which estimates the minimum effective dose (MED) and
maximum tolerable dose (MTD), 2) dose-response existence, and 3) dose-response
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characterization, which describes the shape of the dose-response curves and
decides whether there is a clinically meaningful increase in response between the
minimum effective and maximum tolerable doses. Ruberg (1995a,b) provided a
comprehensive review of the designs, analyses, and interpretations of dose-response
studies.

Among various types of dose-response relationships, dose proportionality (or
linearity) is arguably the most desirable dose-response relationship between dose
level and PK responses such as area under the blood or plasma concentration-time
curve (AUC) due to its clear interpretation. For example, under the assumption
of dose proportionality, we expect to see a doubled AUC if we double the dose.
Besides, under the property of dose proportionality (or linearity), the PK responses
can be easily predicted with various dose levels. Various methods for assessment of
dose proportionality (or linearity), such as ANOVA type F -test, have been proposed
in the literature (see also Chow and Liu, 2003). As pointed out by Law (2000),
assessing departure from dose linearity is also of clinical importance when the dose
proportionality (or linearity) cannot be established. Cheng et al. (2006) proposed a
slope approach to test for a minor departure from dose linearity based on slopes
calculated between the adjacent dose levels. In this article, alternatively, we propose
using the slopes calculated between the initial dose (baseline) and the dose levels.
Under a parallel group design, the traditional ANOVA type F -tests based on the
two slope approaches are compared. A comparison of other tests based on the two
slope approaches will also be made under a different criterion of measure of slope
heterogeneity.

In the next section, model and the two slope approaches are introduced.
Section 3 compares ANOVA type F -tests based on the two slope approaches.
Comparison of other tests based on the two slope approaches is given in Section 4.
Also included in this section are extensive simulations for evaluation of the finite
sample performances of the proposed methods. In the last section, some concluding
remarks are provided.

2. MODEL AND TWO SLOPES APPROACHES

Let yij be the dose response of the jth subject who receives the ith dose level
di, i = 1� � � � � m+ 1, j = 1� � � � � n. We consider the following model

yij = �i + di�ij� (1)

where �i is the mean dose response at the ith dose level di, i = 1� � � � � m+ 1,
and d1 < · · · < dm+1. And �ij values are independent, identically distributed as a
normal random variable with mean 0 and variance �2. Equation (1) implies that
the standard deviation of dose response yij is proportional to its dose level di,
i = 1� � � � � m+ 1.

Define the adjacent slopes as follows

�i =
�i+1 − �i

di+1 − di

� for i = 1� � � � � m�
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We can then assess dose proportionality (or linearity) by testing the following
hypotheses

H0 � �1 = · · · = �m vs. H1 � H0 is not true� (2)

We refer to this approach as the adjacent slope approach. Similarly, define the
baseline slopes as

�i =
�i+1 − �1

di+1 − d1

� for i = 1� � � � � m�

We can also assess dose proportionality (or linearity) by testing the following
hypotheses

H0 � �1 = · · · = �m vs. H1 � H0 is not true� (3)

This approach is referred to as the baseline slope approach.

3. F -TESTS BASED ON THE TWO APPROACHES

Define A as an 	m− 1
×m matrix such that A1m = 0, where 1m is the
m-vector of ones; then testing the null hypothesis H0 in (2) is equivalent to testing
the following null hypothesis

H0 � A� = 0�

The parameter �i is estimated unbiasedly by �̂i, where

�̂i = ȳi� =
n∑

j=1

yij/n�

which is distributed as a normal random variable with mean �i and variance d2
i �

2/n.
In addition, the error variance can be independently and unbiasedly estimated by

�̂2 = 1
m+ 1

m+1∑
i=1

n∑
j=1

	yij − ȳi�

2

	n− 1
d2
i

�

Let � = 	�1� � � � � �m+1

′ and B1 be the m× 	m+ 1
 matrix such that � = B1�, where

B1 =




− 1
d2−d1

1
d2−d1

0 � � � 0

0 − 1
d3−d2

1
d3−d2

� � � 0

���
���

� � �
� � �

���

0 0 � � � − 1
dm+1−dm

1
dm+1−dm



�
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Then we will reject the linear hypothesis H0 in (2) if and only if

T1 =
n�̂′B′

1A
′	AB1DD′B′

1A
′
−1AB1�̂/	m− 1


�̂2
> Fm−1�	m+1
	n−1
��� (4)

where D = diag�d1� � � � � dm+1
 and Fm−1�	m+1
	n−1
�� is the 	1− �
th quantile of an
F -distribution with 	m− 1� 	m+ 1
	n− 1

 degrees of freedom. The above F -test
[Eq. (4)] is in fact a uniformly most powerful invariant (UMPI) test.

Similarly, let B2 be the m× 	m+ 1
 matrix such that � = B2�, where

B2 =




− 1
d2−d1

1
d2−d1

0 � � � 0

− 1
d3−d1

0 1
d3−d1

� � � 0

���
���

���
� � �

���

− 1
dm+1−d1

0 0 · · · 1
dm+1−d1



�

Then we reject the null hypothesis H0 in (3) if and only if

T2 =
n�̂′B′

2A
′	AB2DD′B′

2A
′
−1AB2�̂/	m− 1


�̂2
> Fm−1�	m+1
	n−1
��� (5)

Although T1 and T2 have different expressions, it can be verified that they are
actually identical. In fact, rewrite Ti as

Ti =
n	�̂′D−1
Pi	D

−1�̂
/	m− 1

�̂2

�

where

Pi = DB′
iA

′	ABiDD′B′
iA

′
−1ABiD� i = 1� 2�

Then, 1) both P1 and P2 are projections (in the 	m+ 1
-dimensional Euclidean
space) onto the subspace orthogonal to the one spanned by 1m+1 and
	d−1

1 � � � � � d−1
m+1


′ and 2) 	m− 1
�̂2Ti/n is the squared distance between the origin
0m+1 and the projection image of the vector D−1�̂ under Pi, T1 = T2. This result
implies that the two test rules [Eqs. (4) and (5)] are identical.

4. OTHER TESTS BASED ON THE TWO SLOPE APPROACHES

In the previous section, we showed that the F -tests based on the two slope
approaches yield identical results. The quantity �̂′B′

1A
′	AB1DD′B′

1A
′
−1AB1�̂ in the

numerator of T1 is to estimate �′B′
1A

′	AB1DD′B′
1A

′
−1AB1�, or equivalently in terms
of A�, �′A′	AB1DD′B′

1A
′
−1A�. Similarly, the quantity �̂′B′

2A
′	AB2DD′B′

2A
′
−1AB2�̂

in the numerator of T2 is to estimate �′A′	AB2DD′B′
2A

′
A�. As quadratic forms,
these two quantities can be viewed as measures of the squared “generalized”
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distances from the origin 0 to A� and A�, respectively. However, we notice that
these two measures are associated with different positive definite matrices, namely,
	AB1DD′B′

1A
′
−1 for the former and 	AB2DD′B′

2A
′
−1 for the latter.

Let C be an m×m symmetric, semidefinite matrix such that C1m = 0.
Then, the two parameters �′C�/�2 and �′C�/�2 measure the departure from
their corresponding null hypotheses based on the same measure induced by C.
For example,

∑m
i=1	�i − �̄
2/�2 and

∑m
i=1	�i − �̄
2/�2 correspond to C = Im − 1

m
Um,

where Im is the m×m identity matrix and Um is the m×m matrix of ones. It
is, therefore, of interest to test the null hypothesis [Eqs. (2) and (3)] based on
�̂′C�̂/�2 and �̂′C�̂/�̂2, respectively, and compare their performances under a fixed
alternative.

Define

T3 =
n�̂′C�̂/	m− 1


�̂2
= n�̂′B′

1CB1�̂/	m− 1

�̂2

� (6)

Then we reject H0 in Eq. (2) if and only if T3 > c1��, where c1�� is the 	1− �
th
quantile of T3 under H0 in Eq. (2). It should be pointed out that under H0, the
test statistic T3 is not F distributed because the numerator of T3 is not chi-squared
distributed, although it is independent with the denominator. Consequently, the
critical value c1�� has to be determined numerically.

Similarly, define

T4 =
n�̂′C�̂/	m− 1


�̂2
= n�̂′B′

2CB2�̂/	m− 1

�̂2

� (7)

We reject H0 in Eq. (3) if and only if T4 > c2��, where c2�� is the 	1− �
th quantile
of T4 under H0 in Eq. (3).

It should be noted that theoretical comparison between the two non-F -tests is
difficult to obtain because 1) the critical values c1�� and c2�� involved in the two tests
have no closed form and are generally different and 2) the distributions of T3 and T4

under a fixed common alternative are complicated. To compare the performances
of the two non-F -tests using T3 and T4, a simulation study was conducted to
investigate the power of the two non-F -tests based on T3 and T4. Also included in
the simulation study are the F -tests based on T1 and T2 described in the previous
section.

In our simulation, we consider the following six dose levels d1 = 60mg,
d2 = 120mg, d3 = 180mg, d4 = 240mg, d5 = 300mg, and d6 = 360mg. Following
Cheng et al. (2006), for power calculation the mean dose response �i at dose di is
generated from each of the following nonproportionality dose response patterns

(square-root dose curve): response = 68�31
√
dose (8)

(2/3-th power curve): response = 25�61 dose2/3 (9)

(quadratic dose curve): response = 0�01 dose2 (10)

(logistic dose curve): response = 1296�1+ exp�−	dose− 180
/35
�−1 (11)
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See Fig. 1 for the plots of these patterns. Data are generated according to Eq. (1)
with � = 1. The matrix C in T3 and T4 is chosen to have the following form

C =




w1 0 � � � 0

0 w2 � � � 0
���

���
� � �

���

0 0 � � � wm


−




w2
1 w1w2 � � � w1wm

w2w1 w2
2 � � � w2wm

���
���

� � �
���

wmw1 wmw2 � � � w2
m


 �

where wi’s are weights such that wi ≥ 0 and
∑m

i=1 wi = 1. With the above form of
matrix C, we have

�′C� =
m∑
i=1

wi

[
�i −

( m∑
j=1

wj�j

)]2

and

�′C� =
m∑
i=1

wi

[
�i −

( m∑
j=1

wj�j

)]2

�

Let U be a random variable having a Beta distribution with parameter 	a� b
 and
also let

wi = P

(
i− 1
m

≤ U ≤ i

m

)
� i = 1� � � � � m�

Figure 1 Some nonproportionality patterns with dose proportionality pattern superimposed (in gray).
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Table 1 Estimated powers of tests based on T1, T3, and T4, assuming � = 1�0

w	1� 1
 w	1� 3
 w	3� 1


Pattern n T1 T3 T4 T3 T4 T3 T4

Square-root (8) 10 0.2079 0.0640 0.2326 0.0598 0.2486 0.0968 0.1869
20 0.3948 0.0758 0.4379 0.0633 0.4564 0.1557 0.3377
30 0.5769 0.0933 0.6221 0.0718 0.6383 0.2337 0.4929

2/3-th power (9) 10 0.1334 0.0587 0.1532 0.0584 0.1613 0.0771 0.1239
20 0.2377 0.0653 0.2664 0.0593 0.2857 0.1025 0.2076
30 0.3528 0.0742 0.3818 0.0646 0.4057 0.1377 0.2895

Quadratic (10) 10 0.8435 0.2131 0.8286 0.1466 0.8954 0.4616 0.6166
20 0.9944 0.5012 0.9929 0.2724 0.9973 0.8719 0.9321
30 1.0000 0.7893 0.9999 0.4333 1.0000 0.9863 0.9940

Logistic (11) 10 0.9584 0.6844 0.9664 0.4245 0.9390 0.8701 0.9550
20 0.9998 0.9811 1.0000 0.8285 0.9996 0.9978 0.9998
30 1.0000 0.9998 1.0000 0.9774 1.0000 1.0000 1.0000

and define w	a� b
 = 	w1� � � � � wm

′. In our simulation, we consider three sets of

weights: w	1� 1
, w	1� 3
, and w	3� 1
. Note that w	1� 1
 puts equal weight to all the
dose levels while w	1� 3
 puts heavier weights to the higher dose levels and w	3� 1

puts heavier weights to the lower dose levels. The estimated powers, based on 10,000
simulation runs, are presented in Table 1.

From Table 1 we learn that 1) test T3 is uniformly inferior to either T1 or T4,
2) whether test T4 is more powerful depends on the choice of weights: it could be
more powerful when w	1� 3
 is used but less powerful when weight w	3� 1
 is used,
and 3) even in the cases where T4 is more powerful than T1, the gain in power is not
substantial.

5. CONCLUDING REMARKS

For testing dose proportionality (or linearity), various tests could be used
based on either the adjacent slope approach or the baseline slope approach. We
showed that the ANOVA type F -test derived in Section 3 does not depend on which
slope approach was used. Although this F -test has desirable statistical properties
(e.g., it is the uniformly most powerful test among all of the invariant tests), it is
neither intuitive nor easy to interpret.

Tests based on T3 and T4, on the other hand, are very intuitive, but their
statistical properties are complicated and unclear. Our simulation studies indicated
that test T3 based on the adjacent slopes may suffer substantial power loss as
compared to that of test T4 based on the baseline slopes.

The design considered in this article was a parallel group design. As a result,
the slopes (rate of changes in the mean responses) were estimated from the mean
dose-response curves rather than the individual dose-response profiles. When the
latter is of particular interest, a different design such as an r × s crossover design
with subjects receiving multiple-dose levels could be considered. It should be noted
that if a sufficient length of washout period is applied to wear off the possible
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carryover effect, the comparison made in this paper can be carried out similarly in
a crossover design.

The comparison of the two slope approaches could also be considered for
assessment of the departure from dose linearity. For example, for some prespecified
constant � > 0, the following hypotheses

H0 � �
′C�/�2 ≥ � vs. H1 � �

′C�/�2 < � (12)

and

H0 � �
′C�/�2 ≥ � vs. H1 � �

′C�/�2 < � (13)

could be considered. However, a theoretical comparison is much more complicated
than the one considered in Section 4. This is because that the rejection regions for
testing the hypotheses in Eqs. (12) or (13) cannot be determined easily because the
test statistic T3 (or T4) is not stochastically monotone in �′C�/�2 (or �′C�/�2), thus,
it is unclear at which null hypothesis value of � (or �) the test achieves its size. As a
result, the comparison has to be made on the basis of extensive simulation studies.
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